
Test (2008) 17: 585–605
DOI 10.1007/s11749-007-0057-7

O R I G I NA L PA P E R

Compatible priors for Bayesian model comparison
with an application to the Hardy–Weinberg
equilibrium model

Guido Consonni · Eduardo Gutiérrez-Peña ·
Piero Veronese

Received: 22 July 2005 / Accepted: 2 March 2007 /
Published online: 12 May 2007
© Sociedad de Estadística e Investigación Operativa 2007

Abstract Suppose we entertain Bayesian inference under a collection of models.
This requires assigning a corresponding collection of prior distributions, one for each
model’s parameter space. In this paper we address the issue of relating priors across
models, and provide both a conceptual and a pragmatic justification for this task.
Specifically, we consider the notion of “compatible” priors across models, and dis-
cuss and compare several strategies to construct such distributions. To explicate the
issues involved, we refer to a specific problem, namely, testing the Hardy–Weinberg
Equilibrium model, for which we provide a detailed analysis using Bayes factors.
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1 Introduction

Suppose we wish to make inference, using a Bayesian approach, under a collection
of models for the same observable. If the models are not nested, a separate prior
distribution on the parameter space of each model is typically required.

On the other hand, when models are nested within a unique encompassing model
M, it appears natural to perform inference using the prior assigned on the parameter
θ ∈ Θ under M, since all models under investigation are obtained through a suitable
restriction of Θ . This idea has proved to be especially fruitful in the framework of
model choice/comparison. For instance, Goutis and Robert (1998) and Bernardo and
Rueda (2002) use the expectation, relative to the posterior distribution of θ , of a mea-
sure of divergence between a model and a submodel in order to assess the validity of
model simplification. Specifically, the latter paper uses a decision-theoretic approach
to model choice, based on the concept of intrinsic discrepancy, and the corresponding
reference prior, which only depends on the structure of the model.

When model comparison is performed through the Bayes factor, a specific prior
under each submodel is still required. If each prior is derived from that on θ under M,
we achieve some “compatibility” of prior distributions across models (thus alleviating
the sensitivity of the Bayes factor to prior specification), and we reduce the burden
of the elicitation procedure, which can be especially heavy when the collection of
models is large, see McCulloch and Rossi (1992), Dawid and Lauritzen (2001), and
Roverato and Consonni (2004). A related course of action, based on an objective
approach, is pursued in Casella and Moreno (2006).

Despite these efforts, the notion of compatible priors is still elusive, and it is dif-
ficult, when confronted with a practical problem, to offer firm guidance on how to
proceed. This paper is a step in this direction. Specifically, we consider the problem
of testing the Hardy–Weinberg equilibrium model of population genetics and offer a
careful discussion of prior specifications together with the resulting Bayes factors.

The structure of the paper is as follows. In the next section we review and discuss
several strategies for the construction of compatible prior distributions, focusing, in
particular, on priors obtained via Kullback–Leibler (KL) projections. In Sect. 3 we
describe the Hardy–Weinberg equilibrium model of population genetics. Section 4
discusses prior specifications for testing the Hardy–Weinberg equilibrium model with
an application to a data set previously analysed in the literature. Section 5 contains a
simulation study comparing the Bayes factors for the various compatible priors. The
results show that the KL-projection priors perform well relative to other choices of
compatible priors discussed in this paper. Finally, in Sect. 6 we present some con-
cluding remarks.

2 Strategies to construct compatible priors

As already mentioned in the introduction, the issue of compatibility of prior distribu-
tions across models has been relatively neglected. We present here a brief account of
the available strategies; see also Dawid and Lauritzen (2001).

Consider a model M, and a submodel M0 thereof, for a (vector-valued) obser-
vation X. In a parametric setting this means that if M = {p(·|θ) : θ ∈ Θ}, where



Compatible priors for Bayesian model comparison 587

p(·|θ) is a density for X, and Θ ⊆ R
d , then M0 = {p(·|θ) : θ ∈ Θ̃0}, with Θ̃0 ⊂ Θ .

Note that Θ̃0 lives in R
d although its dimension is typically lower than d . Henceforth

we shall assume dim(Θ̃0) = d0 < d , so that Θ̃0 is isomorphic to a space Θ0 in R
d0 .

Accordingly, we shall write M0 = {p0(·|θ0) : θ0 ∈ Θ0} with Θ0 ⊆ R
d0 .

As an illustration consider the following simple example.

Example 1 Take M to be a bivariate normal model with mean μ = (μ1,μ2) ∈ Θ =
R

2 and known covariance matrix Σ = (σij ), and assume that, under M0, μ1 = μ2 ≡
μ0. Then Θ̃0 = {(μ1,μ2) ∈ R

2 : μ1 = μ2}, while Θ0 = {μ0 : μ0 ∈ R}.

Let πθ denote a prior density over Θ and consider the problem of assigning a
“compatible” prior πθ0 on Θ0. We now discuss some possible strategies.

2.1 Kullback–Leibler projection prior

Quite often in statistical modelling the parameter θ and the corresponding space Θ

have a concrete meaning, and θ is not merely a label indexing a distribution in M.
This is the case in Example 1 above, wherein Θ is the mean space under M, and
similarly for Θ0 under M0. A way to relate M and M0 is through a projection map
τ : Θ �→ Θ0. Given a prior law πθ on Θ , the prior induced on τ(θ) represents a
natural choice for a compatible prior on Θ0, which we name the τ -projection prior
and denote by πτ

θ0
.

Notice that this procedure is not well defined when πθ is improper. This happens
because the dimension of Θ0 is lower than that of Θ , and in order to compute πτ

θ0
an integration with respect to πθ is required: the latter, however, diverges, and thus
no meaningful result can be derived. This feature can be regarded as a difficulty
when an objective Bayesian analysis is looked for, since so-called objective priors are
typically improper. One possible approach is the following: if the objective prior πθ

can be interpreted as the limit of a sequence of proper priors {πθ,h(·), h = 1,2, . . .},
a natural suggestion is to compute the τ -projection prior as

πτ
θ0

(·) = lim
h→∞πτ

θ0,h
(·),

where the limit is defined appropriately, for instance, in the Kullback–Leibler sense
or in terms of intrinsic convergence (see Definition 2 of Bernardo and Rueda 2002).
We will not explore this idea further in this paper.

The next issue we address is the choice of the map τ . The following example
shows some of the difficulties involved.

Example 1 (ctd.) Suppose we reparametrise M by writing μ1 = μ0 and μ2 = μ0 +c,
c ∈ R, so that M0 is identified through c = 0 and parametrised by μ0. One could then
think of obtaining πθ0 as the marginal of μ1 under πθ . On the other hand, one might
have reparametrised M as μ2 = μ̃0 and μ1 = μ̃0 + c̃ so that now M0 is identified
through c̃ = 0 and parametrised by μ̃0, which leads to setting πθ0 as the marginal of
μ2 under πθ . On the other hand, πθ could assign quite different priors to μ1 and μ2,
thus leading to two distinct compatible priors on μ0 and μ̃0. However, μ0 and μ̃0
both represent the mean under M0 and, therefore, should share the same prior.
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Another way of looking at the problems involved in the example above is through
the notion of invariance. Let η = (μ0, c) and γ = (μ̃0, c̃). Under the former para-
metrisation the projection map is τη(η) = μ0, while under the latter it is τγ (γ ) = μ̃0.
Since γ = g(η) = (μ0 + c,−c), so that g−1(γ ) = (μ̃0 + c̃,−c̃), invariance consid-
erations would require that τγ (γ ) = τη(g

−1(γ )), which is violated in this case, since
τη(g

−1(γ )) = μ̃0 + c̃.
In view of the remarks above, a natural suggestion is to take τ(θ) as the Kullback–

Leibler (KL) projection of θ onto Θ0, i.e.,

τKL
θ (θ) = arg min

θ0∈Θ0
KL

(
p0(·|θ0)|p(·|θ)

)
,

where

KL(q|p) = Ep

(
log

p(X)

q(X)

)
,

denotes the KL divergence between the densities p and q relative to a common dom-
inating measure.

A very important feature of the KL-projection is invariance to reparametrisa-
tion. This means that if γ = g(θ) is a reparametrisation under M, then τKL

γ (γ ) =
τKL
θ (g−1(γ )). This guarantees that the procedure generates a prior πτ

θ0
that does not

depend on the specific parametrisation that is chosen. Henceforth, we shall omit the
subscript θ and set θ⊥

0 = τKL(θ).
Notice that KL(q|p) is not symmetric, and this feature may be unsuitable in some

contexts. One way to overcome this difficulty, as suggested by a referee, is to define
a symmetric version such as the intrinsic discrepancy between p and q , i.e.,

δ(p, q) = min
{
KL(q|p),KL(p|q)

}
, (1)

see Bernardo and Rueda (2002).
One further advantage of δ(p, q) is that it is typically finite, even if the support of

q is strictly contained in that of p, in which case KL(q|p) is infinite.
Despite the attractive properties of δ, we prefer to use KL(q|p) in the sequel for

the following reasons: (i) in our approach p denotes the encompassing model while
q represents a possible model simplification of p. Notice that the validity of p is not
questioned, and thus it represents a “benchmark” relative to which all other models
are evaluated. From this point of view taking expectations with respect to p, as in the
directed divergence KL(q|p), appears a sensible procedure. Moreover, it is precisely
in this context that KL(q|p) can be interpreted as the loss in expected utility incurred
when choosing the density q to report inferences instead of the true density p if a
logarithmic scoring rule is used; (ii) for regular nested models (wherein the support
is independent of the parameter), p and q have the same support, so that KL(q|p) is
well defined; (iii) the use of δ(p, q), instead of KL(q|p), adds complexity from an
analytical viewpoint. Specifically, if we let

θ∗
0 = arg min

θ0∈Θ0
KL

(
p(·|θ)|p0(·|θ0)

)
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then the δ-projection of θ onto Θ0 is given by

θδ
0 = arg min

θ0∈Θ0
δ
(
p(·|θ),p0(·|θ0)

)

= min
[
KL

(
p0

(·|θ⊥
0

)|p(·|θ)
)
,KL

(
p(·|θ)|p0(·|θ∗

0 )
)]

. (2)

In general we shall have

θδ
0 =

{
θ⊥

0 , if θ ∈ A,
θ∗

0 , if θ ∈ Ā,

for some A ⊆ Θ .
The derivation of the δ-projection prior requires the calculation of the induced

prior on θδ
0 , which can be very hard or not possible analytically, since it implies

knowledge of both θ⊥
0 and θ∗

0 , together with the structure of the set A. Of course, the
δ-projection prior can be obtained by means of simulation, provided one can sample
θ -values from the given prior distribution πθ . Subsequent analysis, however, can only
be performed using simulated samples.

When the submodel M0 admits a sufficient statistic T (X) = T , the map τKL is
given by

τKL(θ) = arg max
θ0∈Θ0

Eθ

(
log

(
pT

0

(
T (X)|θ0

)))
, (3)

where pT
0 (·|θ0) is the density of T under M0 and Eθ denotes expectation with re-

spect to p(·|θ). Equation (3) holds since p0(x|θ0) = pT
0 (T (x)|θ0)h(x), because of

the factorisation theorem, so that

KL
(
p0(·|θ0)|p(·|θ)

) = Eθ

(
log

pT (T (X)|θ)

pT
0 (T (X)|θ0)

)
+ Eθ

(
log

p(X|θ)

pT (T (X)|θ)h(X)

)
.

Clearly, only the first term involves θ0 through the denominator, whence the result.
The next proposition, which holds for two arbitrary models (not necessarily

nested), provides an explicit way of finding the KL-projection when one of the mod-
els belongs to an exponential family.

Proposition 1 Consider two models Mi = {pi(·|θi), θi ∈ Θi}, i = 0,1. Assume that
M0 is an exponential family with natural parameter ξ ∈ Ξ ⊆ R

d0 and density, with
respect to a suitable measure, given by

p0(x|θ0) = exp
{
ξ(θ0)

T T (x) − M0
(
ξ(θ0)

)}
, (4)

and that E1
θ1

(T (X)) is finite, where Ei
θi

denotes expectation with respect to the
model Mi .

Consider the KL-divergence KL(p0(·|θ0) |p1(·|θ1)) and the corresponding KL-
projection of θ1 onto Θ0, denoted by θ⊥

0 . Then θ⊥
0 satisfies

E0
θ⊥

0

(
T (X)

) = E1
θ1

(
T (X)

)
. (5)
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Proof By (3), minimising KL(p0(·|θ0) |p1(·|θ)) with respect to θ0 is equivalent to
maximising

E1
θ1

(
logp0(X|θ0)

) = ξ(θ0)
T E1

θ1

(
T (X)

) − M0
(
ξ(θ0)

)
.

Differentiating both sides with respect to θ0 and equating to zero, we get the equation

∂M0(ξ)

∂ξ

∣∣∣∣
ξ=ξ(θ0)

= E1
θ1

(
T (X)

)
,

which is equivalent to

E0
θ0

(
T (X)

) = E1
θ1

(
T (X)

)
,

using standard exponential family theory. The solution θ⊥
0 of the above equation with

respect to the unknown θ0 is indeed a maximum because of the log-concavity of
exponential family likelihoods. �

Example 1 (ctd.) Since M0 is an exponential family with sufficient statistic
T (X1,X2) = (X1(σ22 −σ12)+X2(σ11 −σ12))/(σ11σ22 −σ 2

12), one can apply Propo-
sition 1 with M1 = M. From (5) one obtains

μ⊥
0 (σ11 + σ22 − 2σ12)

σ11σ22 − σ 2
12

= μ1(σ22 − σ12) + μ2(σ11 − σ12)

σ11σ22 − σ 2
12

,

whence

μ⊥
0 = μ1(σ22 − σ12) + μ2(σ11 − σ12)

σ11 + σ22 − 2σ12

is the KL-projection.
Note that μ⊥

0 is a weighted average of the two means and reduces to (μ1 +μ2)/2,
when Σ = σ 2I2, where I2 is the identity matrix of order 2.

Given θ ∼ πθ , we define the KL-projection prior on Θ0 as the prior on θ⊥
0 induced

from πθ and denote it by πKL
θ0

. This prior was considered by McCulloch and Rossi
(1992). Goutis and Robert (1998) and Dupuis and Robert (2003) use the notion of a
KL-projection to perform Bayesian hypothesis testing (or model selection), although
they do not resort to KL-projection priors.

Consider again Example 1 and suppose that, under M, μ ∼ N2(m,V ). Then μ⊥
0

is also normally distributed with the appropriate mean and variance. Typically, how-
ever, the KL-projection, let alone its distribution, is not analytically available. For this
reason McCulloch and Rossi (1992) resorted to MCMC computations.

In order to obtain analytic expressions, one can approximate the KL-projection
prior. In particular, if M0 is a Natural Exponential Family (NEF; see Kotz et al. 2000,
Chap. 54) a natural class wherein to search for such an approximation is represented
by a conjugate family for θ0. One can then try to approximate πKL

θ0
via a specific

prior in such a family, which we choose to be the prior that minimises the Kullback–
Leibler divergence from πKL

θ0
; a justification for this procedure will be provided in
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Sect. 2.3. Accordingly, we denote the resulting prior by πKLCA
θ0

, where KLCA stands
for Kullback–Leibler Conjugate Approximation. It is expedient to employ the natural
parametrisation ξ for model M0, introduced in (4), and the corresponding standard
conjugate family Cξ (s

′
0, n

′
0) whose densities, with respect to the Lebesgue measure,

are given by

πC
ξ (ξ) = exp

{
ξT s′

0 − n′
0M0(ξ)

}
h
(
s′

0, n
′
0

)
, (6)

with (s′
0, n

′
0) ∈ H, where H is the interior of the set {(s′

0, n
′
0) ∈ R

d0+1 : (h(s′
0, n

′
0))

−1

< ∞}. Thus, we have the following.

Theorem 1 Consider two models M and M0, parametrised by θ and θ0, respec-
tively, with M0 a submodel of M. Assume that M0 is a NEF with density given in
(4) and natural parameter ξ . Let πKL

ξ be the prior induced on ξ by πKL
θ0

and assume

that πC
ξ ∈ Cξ (s

′
0, n

′
0). Then KL(πC

ξ |πKL
ξ ) is minimised when (s′

0, n
′
0) is a solution of

{
EC(ξ) = EKL(ξ),

EC(M0(ξ)) = EKL(M0(ξ)),
(7)

where EC and EKL denote expectations w.r.t. πC
ξ and πKL

ξ , respectively.

The value for (s′
0, n

′
0) obtained in Theorem 1 identifies a unique distribution in

Cξ (s
′
0, n

′
0), labelled πKLCA

ξ . Finally, πKLCA
θ0

is obtained from πKLCA
ξ by transforma-

tion.

Remark 1 Since the prior πKL
ξ is induced from πθ , we can compute EKL(g(ξ)) as

E(g(ξ(τKL(θ)))), where E denotes expectation w.r.t. πθ , so that the explicit form of
πKL

ξ is not required.

Proof The standard conjugate prior (6) is itself an exponential family with natural
parameter (s′

0, n
′
0) and minimal sufficient statistic (ξ,M0(ξ)). The result then follows

from Proposition 1. �

Example 2 Let X = (X1,X2) and assume that, under M, the Xi , i = 1,2, given μ =
(μ1,μ2) are independent Poisson with mean μi , while M0 requires μ1 = μ2 ≡ μ0.
In this case the sufficient statistic T under M0 is given by X1 + X2, so that using
Proposition 1 one obtains μ⊥

0 = (μ1 + μ2)/2.
If one wants to use the intrinsic discrepancy, instead of KL, one should first

obtain the KL-projection relative to KL(p(·|μ1,μ2) |p0(·|μ0)) which is given
by μ∗

0 = √
μ1μ2, i.e., the geometric mean of μ1 and μ2. One can verify that

KL(p0(·|μ⊥
0 )|p(·|μ1,μ2)) ≤ KL(p(·|μ1,μ2)|p0(·|μ∗

0)), for all (μ1,μ2), whence

μδ
0 = μ⊥

0 ,

so that in this case the use of the discrepancy δ leads exactly to the same projection
as KL(p0|p).
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If the μis are independent Gamma(αi, βi) with expectation αi/βi , the KL-
projection prior on μ0 is no longer analytically available. However, we can approx-
imate it using Theorem 1. From (4) we have ξ = log(μ0) and M0(ξ) = 2 exp(ξ).
Thus, the standard conjugate prior (6) is

πC
ξ (ξ) ∝ exp

{
ξs′

0 − n′
02 exp(ξ)

}
. (8)

Equations (7) with respect to the unknowns s′
0 and n′

0 become

EC(ξ) = EKL(ξ) ≡ E
(
log

(
(μ1 + μ2)/2

))
,

EC
(
2 exp(ξ)

) = EKL(
2 exp(ξ)

) ≡ E(μ1 + μ2) = α1

β1
+ α2

β2
.

(9)

Although it may be possible to find a numerical solution of (9) for given αi,βi ,
i = 1,2, a simple analytic approximation may be derived in a more general way as
described in the following proposition.

Proposition 2 Consider the setting of Theorem 1, with the addition that M0 is a real
NEF. Then an approximation to the system of equations (7) is given by

{
EC(μ0T ) = EKL(μ0T ),

VarC(μ0T ) = VarKL(μ0T ),
(10)

where μ0T = ∂M0(ξ)/∂ξ denotes the mean parameter of T (X) under M0.

With some abuse of notation we will still denote by πKLCA
ξ the prior in Cξ (s

′
0, n

′
0)

with s′
0 and n′

0 satisfying (10).

Remark 2 The system of (10) is typically easier to solve than (7). Indeed, for regular
NEFs, EC(μ0T ) = s′

0/n′
0. Moreover, VarC(μ0T ) is also explicitly available when the

variance function of p0(·|θ0) is quadratic; see, for example, Morris (1982).

Proof From well known properties of exponential families, the function μ0T =
M ′

0(ξ) is invertible, so we can write ξ = ξ(μ0T ). The first equation in (7) be-
comes EC(ξ(μ0T )) = EKL(ξ(μ0T )) and, using a first order Taylor series approx-
imation about the corresponding expectations of μ0T , we obtain ξ(EC(μ0T )) =
ξ(EKL(μ0T )), i.e., EC(μ0T ) = EKL(μ0T ). Using a second order approximation for
the expectations involved in the second equation in (7), we obtain

EC
(
M0

(
ξ(μ0T )

))

= M0
(
ξ
(
EC(μ0T )

)) + 1

2

∂2M0(ξ(μ0T ))

∂μ2
0T

∣∣∣∣
μ0T =EC(μ0T )

VarC(μ0T )

and

EKL(
M0

(
ξ(μ0T )

))

= M0
(
ξ
(
EKL(μ0T )

)) + 1

2

∂2M0(ξ(μ0T ))

∂μ2
0T

∣∣∣∣
μ0T =EKL(μ0T )

VarKL(μ0T ).
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Equating the last two expressions and using the result obtained from the first equation,
the proof is completed. (Note that if a second order approximation were also used for
the first equation the same result would follow.) �

Example 2 (ctd.) Since the prior (8) induces a Gamma(s′
0, n

′
0) distribution on μ0T =

μ1 + μ2 = 2μ0, we have EC(μ0T ) = s′
0/n′

0 and VarC(μ0T ) = s′
0/n′2

0 . Thus, using
Proposition 2, we obtain

⎧
⎨

⎩

s′
0

n′
0

= EKL(μ0T ) = E(μ1 + μ2) = (
α1
β1

+ α2
β2

)
,

s′
0

n′2
0

= VarKL(μ0T ) = Var(μ1 + μ2) = (
α1
β2

1
+ α2

β2
2

)
,

which leads to the solution

s′
0 =

(
α1

β1
+ α2

β2

)2/(
α1

β2
1

+ α2

β2
2

)

and

n′
0 =

(
α1

β1
+ α2

β2

)/(
α1

β2
1

+ α2

β2
2

)
.

Note that if β1 = β2 = β then πKL
μ0T

is Gamma(α1 + α2,2β) which belongs to the
standard conjugate family. In this case, even if we use the approximate solution given
by (10) to compute πKLCA

μ0T
, we obtain πKL

μ0T
= πKLCA

μ0T
since s′

0 and n′
0 become α1 +α2

and β , respectively.

2.2 Conditioning priors

Another strategy to build compatible priors is via conditioning. Let M0 be a sub-
model of M identified by Θ̃0 = {θ ∈ Θ : t (θ) = t0}, where t (·) is (a vector-valued)
function on Θ and t0 a suitable constant. For a given prior πθ on Θ , a natural way
to obtain a compatible prior on Θ̃0 is to condition on t (θ) = t0; the corresponding
prior on Θ0 is denoted by πUC

θ0
, where UC stands for Usual Conditioning. Unfortu-

nately, the UC procedure may lead to different answers depending on the choice of
the constraint function t (·); this, of course, is an instance of the Borel–Kolmogorov
paradox.

Example 1 (ctd.) Since, under M0, one has μ1 = μ2 ≡ μ0, two possible choices for
the constraint function t (·) are t1(μ1,μ2) = μ1 −μ2 and t2(μ1,μ2) = μ1/μ2. It may
be checked, however, that the conditional distribution of μ1 given t1(μ1,μ2) = 0 is
different from that of μ1 given t2(μ1,μ2) = 1.

To overcome the ambiguity associated with the UC-approach, which will be fur-
ther exemplified in Sect. 3, Dawid and Lauritzen (2001) introduced a modification of
the UC procedure named Jeffreys conditioning. The resulting expression for the prior
on Θ̃0 is given by

π JC
0 (θ) ∝ π(θ)

j0(θ)

j (θ)
, θ ∈ Θ̃0, (11)
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where j (θ) = |H(θ)|1/2 and |H(θ)| is the determinant of the Fisher information ma-
trix for θ under M, so that j (θ) is the Jeffreys prior for θ , and analogously for j0(θ)

under the model M0. As usual, we can re-express π JC
0 in terms of θ0 ∈ Θ0 and,

accordingly, we shall employ the notation π JC
θ0

.
A useful feature of Jeffreys conditioning is that it is invariant under model repara-

metrisation. A potential difficulty with Jeffreys conditioning is that the resulting prior
π JC

θ0
may be improper even though πθ is proper.

Finally, we remark that Jeffreys conditioning is a special case of a more gen-
eral procedure, named reference conditioning, developed in Roverato and Consonni
(2004) for the analysis of models having a causal structure.

2.3 A decision theoretical approach

Another approach to the choice of a compatible prior is to state this as a decision
problem (see, for example, Bernardo and Smith 1994, Chap. 6). Specifically, consider
a statistical decision problem with the following elements:

Decision space

D = {π0 : π0 is a p.d.f. on Θ0},
where p.d.f. stands for probability density function. Typically, D is a parametric fam-
ily so that π0(·) ≡ π0(·|ω0), with ω0 ∈ Ω0, where Ω0 is the set of hyperparameters.
For example, in the setting described in Theorem 1, D is equal to the class of priors on
Θ0 induced from the standard conjugate family on ξ , Cξ (s

′
0, n

′
0), so that ω0 = (s′

0, n
′
0).

In such cases we can identify D with Ω0.

States of the world

P = {
p(·|θ) : θ ∈ Θ

}
.

This is the (parametric) family of densities corresponding to the model M. As in the
previous case, we can identify P with Θ .

Prior

πθ , a p.d.f. on Θ,

describing prior beliefs about the value of θ .

Utility function

U(ω0, θ) =
∫

pS(s|θ) logmS
0 (s|ω0)η(ds),

where S = S(X) is a statistic, η is an appropriate carrier measure, and

mS
0 (s|ω0) =

∫
pS

0 (s|θ0)π0(θ0|ω0) dθ0

denotes the (prior) predictive distribution of S under M0.
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If the conditions of Fubini’s theorem hold, the corresponding expected utility is
given by

Ū (ω0) =
∫

U(ω0, θ)πθ (θ) dθ =
∫ {∫

pS(s|θ) logmS
0 (s|ω0)η(ds)

}
πθ (θ) dθ

=
∫ {∫

pS(s|θ)πθ (θ) dθ

}
logmS

0 (s|ω0)η(ds)

=
∫

mS(s) logmS
0 (s|ω0)η(ds), (12)

where mS(s) denotes the predictive distribution of S under M.
The rationale behind this specific choice of utility function is that predictive distri-

butions can be directly compared across models (unlike prior distributions, especially
in the case of nested models).

The solution to the decision problem is the prior π0(·|ω0) corresponding to the
value of ω0, which maximises the expected utility (12). Note that maximising Ū (ω0)

with respect to ω0 is equivalent to minimising the Kullback–Leibler divergence be-
tween mS(·) and mS

0 (·|ω0). We emphasise that this utility function gives a precise
meaning to the notion of “compatibility” between priors: two priors are most com-
patible when the corresponding predictive distributions of the chosen statistic under
M and M0 are closest to each other, and the Kullback–Leibler criterion is a natural
measure of the divergence between two distributions. For a related view see Ibrahim
(1997) and the references therein.

Unfortunately, the computation of Ū (ω0) is difficult in general and so an approx-
imation will be typically required. However, we can provide a simple asymptotic
approximation which further motivates the result of Theorem 1.

Take S = θ̂ , where θ̂ is the maximum likelihood estimator of θ under M based
on a sample of size n. The predictive distribution of θ̂ is mθ̂(s) = ∫

pθ̂ (s|θ)πθ (θ) dθ.

Under suitable regularity conditions and for each given θ , as n → ∞, the sampling

distribution of θ̂ degenerates at the point θ , so that mθ̂(θ) ≈ πθ (θ). Similarly, given
M0 and under suitable regularity conditions, θ̂ → θ⊥

0 as n → ∞; see, for exam-

ple, Wald (1949). Hence, asymptotically mθ̂
0(θ

⊥
0 |ω0) ≈ π0(θ

⊥
0 |ω0). Recalling from

Sect. 2.1 that θ⊥
0 = τKL(θ), with the latter defined in (3), the expected utility (12) can

then be approximated by

Ū (ω0) ≈
∫

πθ (θ) logπ0
(
τKL(θ)|ω0

)
dθ. (13)

Maximising the right-hand side of this expression with respect to ω0 is equivalent to
minimising the Kullback–Leibler divergence between the KL-projection prior on Θ0,
πKL

θ0
, and the prior π0(·|ω0). To see this, note that the right-hand side of (13) can be

written as

Eπθ
{
logπ0

(
τKL(θ)|ω0

)}
,

which is equivalent to E
πKL

θ0 {logπ0(θ0|ω0)}.
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The previous argument shows that, in the setting of Theorem 1, the Kullback–
Leibler Conjugate Approximation, πKLCA

θ0
, is also an approximate solution to the

decision problem described in this section. Specifically, πKLCA
θ0

gives rise to a predic-

tive distribution for θ̂ , under M0, which is approximately closest in KL-divergence
to the corresponding predictive distribution for θ̂ under M.

3 The Hardy–Weinberg model

The Hardy–Weinberg (HW) model of equilibrium has been of interest to population
geneticists in a variety of contexts, most notably evolutionary theory and forensic sci-
ence. Lindley (1988) discusses Bayesian testing for HW-equilibrium and, in particu-
lar, computes, for four different data sets, the Bayes factor in favour of the HW-model
versus a general (disequilibrium) model.

We follow Lindley to provide a brief introduction to the genetic problem and set
some notation. At a single locus with two alleles, a diploid individual can be one of
three possible genotypes, namely: AA, Aa, aa (aA being indistinguishable from Aa).
Let p1,p2,p3 with pi ≥ 0 and p3 = 1 − p1 − p2 be the genotype frequencies in the
population. Alternatively, pi may be thought of as the probability that an individual,
randomly chosen from the population, be of genotype i.

Consider a random sample of n individuals from the population. Conditionally
on (p1,p2), let X1 and X2 represent genotype 1 and 2 counts whose joint sampling
distribution is trinomial with index n and probabilities (p1,p2); we name this the
“General Model” (GM), which corresponds to M in the notation of the previous sec-
tion. Note that GM is a two-dimensional NEF with canonical parameter θ = (θ1, θ2),
where θi = log{pi/(1 − p1 − p2)}, and canonical statistic (X1,X2). The population
is said to be in HW-equilibrium if

p1 = p2, p2 = 2p(1 − p), p3 = (1 − p)2, (14)

for some 0 < p < 1. Note that (14) can be equivalently stated as saying that p2 =
2
√

p1(1−√
p1 ). The trinomial model under assumption (14) is a curved exponential

family and we name it the HW-model. It corresponds to M0 in the notation of the
previous section. It can be verified that the HW-model is itself a one-dimensional
NEF, actually Binomial(p,2n), with canonical parameter ξ = log{p/(1 − p)} and
canonical statistic T (X1,X2) = 2X1 + X2.

It is often convenient to reparametrise GM so as to show more explicitly the depar-
ture from the HW-model by means of disequilibrium parameters. There are several
ways to do this, as described in Shoemaker et al. (1998), to which we refer for further
details and references. We present here three such reparametrisations.

The first, due to Hernández and Weir (1989), writes the trinomial probabilities as

p1 = p2 + D, p2 = 2p(1 − p) − 2D, p3 = (1 − p)2 + D, (15)

where D represents a disequilibrium parameter and is subject to the following con-
straints

max
{−p2,−(1 − p)2} ≤ D ≤ p(1 − p). (16)

Clearly, D = 0 corresponds to equilibrium.



Compatible priors for Bayesian model comparison 597

The second parametrisation (Weir 1996) uses the inbreeding coefficient within
populations, here denoted by f . It is given by

p1 = p2 + p(1 − p)f, p2 = 2p(1 − p)(1 − f ),

p3 = (1 − p)2 + p(1 − p)f.
(17)

The constraints on f are

max
{−p/(1 − p),−(1 − p)/p

} ≤ f ≤ 1, (18)

and f = 0 corresponds to HW-equilibrium.
Lindley (1988) suggested the following reparametrisation

α = 1

2
log

4p1p3

p2
2

, β = 1

2
log

p1

p3
. (19)

Note that if HW-equilibrium (14) obtains then α = 0, and β = log{p/(1 − p)};
conversely, if α = 0 then p2 = 2

√
p1(1 − √

p1) which is equivalent to (14), whence,
setting p1 = p2 one has β = log{p/(1 − p)} = ξ . In other words α = 0 identifies the
HW-model. An important advantage of the (α,β) parametrisation is that the two pa-
rameters are variation independent, as opposed to the awkward dependence between
p and D, exhibited in (16), or between p and f , as shown in (18).

4 Compatible priors for testing Hardy–Weinberg equilibrium

4.1 Priors under the general model

We assume that, under GM, (p1,p2) is distributed according to a Dirichlet prior,
with hyperparameters mi > 0, written Di(m1,m2,m3). We define M = m1 + m2 +
m3 to be the “precision” of the Dirichlet family. The Dirichlet family is (standard)
conjugate for the general model and allows a closed-form expression for the marginal
distribution of the data, which is especially useful in order to compute the Bayes
factor. Moreover, it covers a wide range of possible prior specifications as we now
detail.

First of all we remark that (p1,p2) and (α,β), introduced in (19), are conjugate
parametrisations, as defined in Gutiérrez-Peña and Smith (1995). This means that the
Dirichlet family on (p1,p2) is equivalent to the standard conjugate family on (α,β),
in the sense that the latter can be obtained via a change of variable technique.

Lindley (1988) argues in favour of a data-dependent choice for the hyperparame-
ters (m1,m2,m3), namely

m1 = Mp̂2, m2 = M2p̂(1 − p̂), m3 = M(1 − p̂)2, (20)

where p̂ is the maximum likelihood estimate of p under the HW-model, i.e.,
p̂ = (2x1 + x2)/(2n). The choice of (m1,m2,m3), described in (20), is such that
E(pi) = mi/M obey the HW-equilibrium, while the corresponding prior on (α,β)

has a mode at α = 0, which characterises the HW-model; accordingly, we name it
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“HW-Dirichlet”, since this prior always favours the HW-model. Moreover, there is no
disagreement between prior expectation and the ML-estimate under the HW-model:
in Lindley’s opinion the advantage of (20) is that “any effects observed are not con-
founded with the difference in the allele-proportion between observed and expected”.

Now let p̂i = xi/n be the MLE of pi under GM. Since Mp̂i is unbiased for mi

under the predictive distribution of p̂i , an alternative data-dependent choice, based
on an empirical Bayes argument, for the hyperparameters of the Dirichlet family is

m1 = Mp̂1, m2 = Mp̂2, m3 = Mp̂3,

whose expectations are in agreement with the GM. We name this prior “GM-
Dirichlet”.

A further, data-independent Dirichlet prior we consider is the symmetric Dirichlet
with mi = M/3. The special case M = 3/2 (so that mi = 1/2) corresponds to Jeffreys
prior. Note that this prior cannot favour the HW-model, since its expectation structure
does not satisfy the corresponding constraint.

4.2 Compatible priors

Given the Dirichlet prior (p1,p2) ∼ Di(m1,m2,m3) under GM, one can compute the
corresponding compatible prior according to Jeffreys conditioning or KL-projection.

For completeness, we also mention the possibility of applying usual condition-
ing (UC), although, as discussed above, this is not particularly advisable given the
lack of invariance. For example, if one reparametrises the problem in terms of (α,β)

and then conditions on α = 0, one obtains p ∼ Beta(2m1 + m2,2m3 + m2), as in
Lindley (1988); we label this prior πUC

p . On the other hand, if one had started with
the alternative parametrisation (15), the conditional distribution of p given D = 0
would have been Beta(2m1 + m2 − 2,2m3 + m2 − 2), provided 2m1 + m2 > 2 and
2m3 + m2 > 2; we label this distribution πUCD

p , where UCD stands for Usual Condi-
tioning given D = 0.

4.2.1 KLCA-prior

In order to identify the KL-prior, recall that T = (2X1 + X2) is a sufficient statistic
for the HW-model with a Binomial(p,2n) distribution. From Proposition 1, the KL-
projection is the solution with respect to the unknown p of the following equation

EHW
p

(
T (X1,X2)

) = EGM
p1,p2

(
T (X1,X2)

)
,

i.e., 2np = n(2p1 + p2), whence p⊥ = p1 + p2/2.
Since πKL

p cannot be obtained in a closed form, we apply Proposition 2. Equating
the expectations and variances of p under πKL

p and πC
p , the latter being a Beta(a, b),

and solving for a and b we obtain

a = 1

2

(2m1 + m2)(m
2
2 + 2m1m2 + m2 + 2m2m3 + 4m1m3)

(m1m2 + 4m1m3 + m2m3)
,

b = 1

2

(8m1m
2
3 + 8m1m2m3 + 2m1m

2
2 + m2

2 + 2m2m3 + 4m2m
2
3 + m3

2 + 4m2
2m3)

(m1m2 + 4m1m3 + m2m3)
,
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Fig. 1 Prior πKL
p (dotted line)

and its approximation πKLCA
p

(solid line) for m1 = 1, m2 = 2,
m3 = 3

which reduces to a = b = (3M + 1)/4 when m1 = m2 = m3 = M/3.
Figure 1 shows the actual prior πKL

p along with its approximation πKLCA
p for a spe-

cific choice of the hyperparameters (m1,m2,m3). We have experimented with several
choices of (m1,m2,m3) and always found an excellent fit of the approximation.

4.2.2 JC-prior

In order to compute the JC-prior we need the following items. First of all, j (p1,p2)

is given by the square-root of the determinant of the Fisher information matrix for the
trinomial model. This is easily computed as j (p1,p2) ∝ {p1p2(1 − p1 − p2)}−1/2.

Since the distribution of 2X1 + X2 under the HW model is Binomial(p,2n), one can
derive j0(p) ∝ {p(1 − p)}−1/2. We can finally obtain the JC-prior on p as

π JC
p (p) ∝ πp1p2

(
p1(p),p2(p)

) × j0(p)

j (p1(p),p2(p))

∝ p2m1+m2−2(1 − p)2m3+m2−2, (21)

namely a Beta(2m1 +m2 −1,2m3 +m2 −1). Clearly, π JC
p is proper, provided 2m1 +

m2 > 1 and 2m3 + m2 > 1.
Recalling that the “precision” of a Beta distribution with parameters (a, b) is

(a + b), it follows that the precision under the UC-prior is 2M , while that under
the JC-prior is 2(M − 1). The precision under the KLCA-prior is more complex but,
assuming m1 = m2 = m3, it becomes 3

2M + 1
2 , which is smaller than either of the pre-

vious two when M > 5 . Furthermore, it is interesting to compare the expected values
of p under each of the three priors which are EUC = EKLCA = (2m1 + m2)/(2M)

and EJC = (2m1 + m2 − 1)/(2M) (provided π JC
p is proper).

4.3 Bayes factors

From the previous subsections we conclude that, when the prior under GM is
Di(m1,m2,m3), all compatible priors under HW are of type Beta(a, b). As a con-
sequence, for trinomial data (x1, x2, x3), it can be shown that the Bayes factor in
favour of the HW-model takes the form

B01 = 2x2�(M + n)�(a + 2x1 + x2)�(b + 2n − 2x1 − x2)�(a + b)�(m1)�(m2)�(m3)

�(M)�(a)�(b)�(a + b + 2n)�(m1 + x1)�(m2 + x2)�(m3 + n − x1 − x2)
.
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In order to compare the behaviour of B01 under different compatible priors, we
consider four data sets, each having sample size n = 100, previously analysed by
Emigh (1980) and Lindley (1988): {31,38,31}, {6,22,72}, {2,6,92} and {1,8,91}.
For the first three sets, the classical Haldane’s “exact” test (Haldane 1954) rejects the
null hypothesis of HW-equilibrium with significance level below 3.4%, whereas for
the last data set the HW-model is not rejected, its p-value being around 20%.

Table 1 shows the Bayes factors for each of the four data sets, each choice of
Dirichlet prior under the general model (HW, GM, symmetric, and Jeffreys), and
each compatible prior (UC, JC, KLCA), for various values of M . Note that the com-
bination HW-Dirichlet/UC corresponds to Table 3 of Lindley (1988).

Consider first the comparative behaviour of the priors under the general model.
In the case of the HW-Dirichlet prior, it is apparent that the values of B01 are higher

than the corresponding values for the other priors under the general model, and this
is consistent with the fact that the HW-Dirichlet supports the HW-model. Moreover,
for the first three data sets B01 initially decreases, as M grows, and then increases;
for the last data set, the decrease of B01 is monotone. In any case, its limiting value
is 1; see the discussion in Lindley (1988). Under the GM- and symmetric Dirichlet
prior, B01 decreases monotonically for all data sets as M increases; its limiting value
is, however, data-dependent.

From the above comments, we conclude that only moderate values of M should
be used in the analysis.

To fix the value of M we may use an argument based on imaginary observations,
see Spiegelhalter and Smith (1980). Here is the idea expressed in a more general con-
text. Given a model M and a submodel M0, consider a minimal imaginary training
sample that provides maximal support (irrespective of the prior) to M0. Then it is
reasonable to require that the Bayes factor should be around one, since the evidence
in favour of M0 is based on a limited sample size.

We implement the above argument as follows. Since under the GM there are two
unknown parameters p1 and p2, we consider an imaginary minimal training sample
of two observations (y1, y2). Next we identify those realisations that provide maximal
support to the HW-model by computing the Likelihood Ratio Test (LRT) statistic

Λ(y1, y2) = L0(p̂)

L1(p̂1, p̂2)
,

where L0 (respectively, L1) is the likelihood under the HW-model (respectively, the
GM-model); p̂ = 2y1+y2

2n
and p̂i = yi

n
, i = 1,2, with n = 2. One can verify that

Λ(y1, y2) is maximised at (y1, y2) = (0,0) or at (y1, y2) = (2,0), with Λ(y1, y2)

taking the value one. Consider for concreteness the symmetric prior under the GM
and the KLCA prior under the HW. Then the Bayes factor is the same under the above
two realisations and is equal to

B01 = 9
M + 1

M + 3

�(aKL + 4)

�(2aKL + 4)

�(2aKL)

�(aKL)
, (22)

where aKL = 3M+1
4 . Setting B01 = 1 in (22) and solving for M leads to M = 0.24;

on the other hand, setting M = 1 into (22) gives B01 = 0.9, which is essentially indis-
tinguishable from 1 for our purposes. If, instead of KLCA, we use the JC-procedure,
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Table 1 Bayes factors in favour of HW for three compatible priors

UC JC KLCA UC JC KLCA

Data set {31,38,31} {6,22,72}
(p̂ = 0.50) (p̂ = 0.17)

Jeffreys prior

0.617 0.310 0.587 0.804 0.710 0.820

M HW-Dirichlet

1 0.997 – 1.267 4.556 – 5.940

5 0.349 0.312 0.366 1.208 0.620 1.269

20 0.241 0.236 0.243 0.600 0.545 0.607

500 0.691 0.691 0.691 0.794 0.794 0.794

M GM-Dirichlet

1 0.857 – 0.915 2.720 – 2.968

5 0.277 0.248 0.258 0.733 0.376 0.686

20 0.137 0.134 0.126 0.324 0.295 0.300

500 0.060 0.060 0.059 0.136 0.136 0.134

M Symmetric Dirichlet

1 0.852 – 0.852 1.172 – 1.172

5 0.281 0.251 0.251 0.251 0.375 0.375

20 0.147 0.144 0.131 0.030 0.042 0.162

500 0.089 0.089 0.087 6.4e–6 6.4e–6 4.2e–5

Data set {2,6,92} {1,8,91}
(p̂ = 0.05) (p̂ = 0.05)

Jeffreys prior

0.096 0.244 0.111 1.083 2.748 1.256

M HW-Dirichlet

1 7.739 – 10.645 65.956 – 90.718

5 1.753 – 1.857 14.008 – 14.841

20 0.661 0.376 0.668 4.303 2.447 4.352

500 0.678 0.676 0.679 1.136 1.132 1.136

M GM-Dirichlet

1 1.482 – 1.435 19.534 – 23.000

5 0.335 – 0.286 4.323 – 4.152

20 0.123 0.070 0.107 1.483 0.844 1.399

500 0.046 0.046 0.045 0.511 0.510 0.505

M Symmetric Dirichlet

1 0.164 – 0.164 1.718 – 1.718

5 0.011 0.039 0.039 0.164 0.584 0.584

20 7.4e–5 1.7e–4 0.005 0.001 0.003 0.080

500 7e–11 7e–11 2.4e–9 4e–10 4e–10 1.4e–8
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the value M = 1 is not acceptable, since it leads to an improper prior under the HW-
model; however, if M = 2.24 then B01 = 1, and indeed M = 2 gives B01 = 1.1, so
that in this case a value of M = 2 seems appropriate. We conclude that a value of M

between 1 and 2 represents a reasonable choice for a weakly informative prior.
In order to better appreciate the relative merits of the priors involved under the

general model, it is expedient to use a scale for the value of the Bayes factor against
the HW-model, B10, according to a suggestion of Jeffreys, as described in Kass and
Raftery (1995, p. 777). Specifically, we consider four classes of evidence against the
HW-model based on log10 B10 = − log10 B01, namely: (−∞,1/2] “no evidence or
not worth more than a bare mention”; (1/2,1] “substantial”; (1,2] “strong; (2,∞)
“decisive”. In practice a value of B01 less than 0.31 leads to a rejection of M0.

It is worth focusing on the third and fourth data sets, since they are seemingly
similar (and, in fact, give rise to the same MLE for p under the HW-model), but lead
to different conclusions according to the frequentist approach as described above. The
latter conclusion is confirmed if one adopts Jeffreys prior (corresponding to M = 1.5)
and any of the compatible priors.

Lindley (1988) used a reference prior on (α,β), see (19), and plotted the corre-
sponding posterior distribution of α for the data set {1,8,91}. Recall that the HW-
model is identified by α = 0. Since the reference prior is improper, we can evaluate
the evidence in favour of the HW-model (i.e., α = 0) by means of an HPD (High
Posterior Density) interval for α at levels 95% and 99%. In both cases M0 is rejected
for the third data set and is accepted for the last data set. For the first two data sets
M0 is rejected at level 95% while it is accepted at level 99%. There is thus perfect
agreement between the conclusion based on the 99% HPD reference interval for α

and that obtained under Jeffreys prior together with any compatible prior, according
to the Jeffreys scale.

From the previous discussion of the four data sets analysed by Lindley it appears
that there is no appreciable difference between the various compatible priors under
investigation.

5 Simulation study

In order to provide a more detailed comparison of the Bayes factors using different
compatible priors, we have performed both an asymptotic analysis based on Laplace
approximation and a simulation study. As far as the former is concerned, the reader
is referred to the full technical report (Consonni et al. 2005, Sect. 4.4), from which it
appears that, at least asymptotically, the KLCA-prior is an appealing choice. Here we
consider a simulation study with two scenarios. The first, labelled “equilibrium”, as-
sumes that the HW-model is true: specifically, we generated 1, 000 trinomial data sets
for each value of the parameter p in the set {0.05,0.17,0.50} and each sample size
n in the set {10,50,100,500,1000}. The second scenario, labelled “disequilibrium”,
assumes that the GM holds under a variety of disequilibrium situations. Specifically,
we used the parametrisation discussed in (17), and generated 1, 000 trinomial data
sets for each value of the inbreeding coefficient f in the set {−0.15,0.5,0.95} and
p = 0.17. The values of the sample size n were chosen as in the equilibrium scenario.
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We used a symmetric Dirichlet prior under the GM, which seems appropriate,
at least as a benchmark, if one does not want to rely on data-dependent priors. Be-
cause of the remarks in Sect. 4.3, we considered only small to moderate values of M ;
specifically, we let M vary in the set {1.5,5,10,20}. For each choice of the compati-
ble prior UC, JC and KLCA, we computed the Bayes factor against the HW-model,
B10, so that we were able to use directly the four-class scale proposed by Jeffreys, as
discussed in Sect. 4.3.

Due to space constraints, here we shall only summarise the main findings of our
simulation study. Further details can be found in the technical report (Consonni et al.
2005), where the relative frequency distribution of log10 B10 across the four classes
is presented, both under “equilibrium” (Table 2) and “disequilibrium” (Table 3), for
n = 10 and n = 100.

Consider first the equilibrium scenario. The performance of KLCA is almost al-
ways superior relative to UC and JC in terms of correct classification. For example,
when p = 0.05, n = 100, M = 10, the frequency of class 1, corresponding to “no ev-
idence or not worth more than a bare mention” is only 20% under UC and 63% under
JC, while it is 90% under KLCA. Moreover, KLCA is less sensitive to the choice of
M , irrespective of the sample size; for example, when M = 20 (not reported in the
table), the corresponding percentages are 1%, 2% and 63%.

Consider now the disequilibrium scenario. In particular, focus first on the case
f = −0.15, corresponding to a situation which is actually “close” to equilibrium, not
only for p = 0.17 but for all values of p; see Fig. 2a. For sample sizes up to n = 100,
the modal class is by far the first one, formally corresponding to a wrong statement,
although for n ≥ 500 the performance markedly improves, with classes “strong” and
“decisive” together accounting for at least 80% of the frequency. Summarising, while
all compatible priors perform poorly for low to moderate n, this is not too worrisome,
since the disequilibrium model under consideration is actually “close” to equilibrium;
at any rate, the Bayes factors become sensible for large values of n. Overall, the
performance of KLCA versus UC and JC is comparable for values of M up to 10.

We now consider the case corresponding to f = 0.50, which is substantially dif-
ferent from equilibrium; see Fig. 2b. For all priors the combined frequency of the
third and fourth classes is at least 90%, when n exceeds 100. For lower values of the
sample size this frequency decreases, and can be very low for n = 10. In the latter
cases KLCA performs only slightly worse.

Fig. 2 Curves describing p1, p2 and p3 under the equilibrium model (solid lines) and disequilibrium
models (dotted lines) with: (a) f = −0.15 (left); (b) f = 0.50 (right)
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We finally turn to the case f = 0.95, which represents an extreme form of dise-
quilibrium. Only for n = 10 is the combined frequency of the third and fourth class
not completely satisfactory: again KLCA’s performance is comparable to that of the
remaining priors.

For large n (e.g., 1000) the distribution is essentially degenerate at the correct class
for all choices of compatible priors.

6 Discussion

In this paper we have discussed strategies to construct compatible priors for a collec-
tion of submodels. We have criticised the Usual Conditioning (UC) approach because
of its lack of invariance to the choice of the constraint function, and we have discussed
two alternative approaches, namely Jeffreys Conditioning (JC) and Kullback–Leibler
(KL) projection, both of which are invariant to reparametrisation. A criticism of JC
is that it is based on a procedure that may violate probability rules: specifically, it can
lead to an improper compatible prior, even when the starting prior is proper.

We believe that the motivation behind the approach based on the KL-projection
is appealing. Moreover, the approximation we have developed in this paper not only
makes the method operationally applicable but also provides, at least asymptotically,
an interesting interpretation from a decision theoretical point of view based on pre-
dictive distributions.

We tested the three procedures to construct compatible priors on a specific prob-
lem, namely the Hardy–Weinberg equilibrium model, using both real and synthetic
data, for a variety of prior specifications under the encompassing model, including a
weakly informative one. As far as the data sets analysed in Lindley (1988) are con-
cerned, the KLCA and UC priors perform similarly, lending greater support to the
HW-model than the JC-prior.

To further investigate the relative merits of the various compatible priors, we car-
ried out a simulation study under a variety of situations involving different generating
models, sample sizes and precisions of the prior under the general model. When the
HW-model was the generating mechanism, the KLCA prior performed best in terms
of model choice; on the other hand, it performed similarly to the other priors under a
range of disequilibrium models, despite its tendency to favour the equilibrium model.
From this perspective the approach based on the KL-projection seems promising and
worth of further investigation in other applied domains.
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